Our Methodology
Overview
AI Crypto News uses a multi-stage pipeline to collect, process, and analyze cryptocurrency news. Our system runs continuously, fetching new articles every 5 minutes, classifying them every 10 minutes, and generating entity summaries every 30 minutes.
1. News Collection
We aggregate RSS feeds from 19+ cryptocurrency news publications. Our collector:
- Fetches articles from all sources in parallel
- Deduplicates content using URL matching
- Enriches articles with Open Graph images when missing
- Stores articles in Redis cache for fast retrieval
Update Frequency: Every 5 minutes
2. Sentiment Classification
Each article is analyzed by our AI model (Llama 3.2) to determine market sentiment:
Bullish
News that suggests positive price action, adoption growth, favorable regulations, successful upgrades, or institutional interest.
Bearish
News indicating potential negative impact: hacks, regulatory crackdowns, project failures, market manipulation, or negative macroeconomic factors.
Neutral
Informational content without clear market direction: educational articles, technical updates, or balanced market analysis.
Important
High-impact news regardless of sentiment: major announcements, breaking news, regulatory decisions, or significant market events.
3. Importance Scoring
Our AI assigns importance scores from 1-10 based on potential market impact:
- 1-3 (Low): Minor updates, routine news, educational content
- 4-6 (Medium): Noteworthy developments, partnership announcements, technical milestones
- 7-9 (High): Significant market events, major protocol upgrades, regulatory news
- 10 (Critical): Market-moving events, security incidents, major institutional moves
4. Entity Extraction
We automatically identify and tag entities mentioned in articles:
- Cryptocurrencies: 84+ symbols (BTC, ETH, SOL, etc.) and full names
- ETFs: Bitcoin and Ethereum ETF tickers (IBIT, FBTC, ARKB, etc.)
- Key Terms: airdrop, listing, mainnet, halving, regulation, hack, etc.
- Protocols & Exchanges: Major DeFi protocols and centralized exchanges
5. Entity Summaries
For major cryptocurrencies (BTC, ETH, SOL, XRP, BNB, ADA, DOGE, TRX, XLM, LINK), we generate AI-powered market analysis summaries:
- Paragraph 1: Current developments and main news themes
- Paragraph 2: Market sentiment and trading implications
- Paragraph 3: Upcoming catalysts and market outlook
Update Frequency: Every 30 minutes, based on the latest 10 articles per entity
6. Caching Strategy
We use a multi-layer caching system for optimal performance:
- In-Memory Cache: Fastest access for frequently requested data
- Redis Cache: Persistent storage with configurable TTL
- Stale-While-Revalidate: Serve cached data while refreshing in background
This ensures you always get fast responses while maintaining data freshness.
AI Model Details
We use locally-hosted Ollama with Llama 3.2 models for privacy and speed:
- Classification: Llama 3.2 3B parameter model (higher accuracy)
- Summarization: Llama 3.2 1B parameter model (faster generation)
- Temperature: 0.3 (focused, consistent outputs)
- Processing: All AI inference runs locally - no data sent to external APIs
Limitations
While our AI system strives for accuracy, please be aware of these limitations:
- AI sentiment analysis may misinterpret sarcasm, nuance, or complex narratives
- Importance scores are algorithmic estimates, not guarantees of market impact
- Entity extraction may miss context-dependent references
- News aggregation depends on source RSS feed availability and formatting
- Market conditions can change faster than our update intervals
Always verify important information with original sources and conduct your own research.
Preguntas Frecuentes
Modelos Llama 3.2 (3B para clasificación, 1B para resúmenes), alojados localmente vía Ollama.
Cada artículo se analiza para señales alcistas, bajistas o neutrales basándose en patrones de lenguaje y contexto.
Sí—la IA puede perder sarcasmo, matices o narrativas complejas. Siempre verifica noticias importantes.
Basándose en factores como palabras clave de noticias de última hora, menciones de entidades e impacto potencial del mercado.
No—todo el procesamiento de IA ocurre localmente. Ningún contenido de artículos o datos de usuario se envía a APIs externas.